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The influence of rotation upon internal solitary waves is studied in a 
(10 m x 2 m x 0.6 m) channel located on the large rotating platform at Grenoble 
University. We observe an intumescence which moves along the right-hand side of 
the channel with respect to its direction of propagation. Along the side, once the 
intumescence reaches its equilibrium shape, the height variation of the interface with 
time is correctly described by the sech2 function, and the characteristic KdV scaling 
law linking the maximum amplitude and the wavelength along the side is fulfilled. 
The intumescence is a stable phenomenon which moves as a whole without defor- 
mation apart from the viscous damping. For identical experimental conditions, the 
amplitude of the intumescence along the side increases with increasing Coriolis 
parameter, and at a given period of rotation of the platform, the celerity along the 
side increases with increasing amplitude. But for identical conditions, we found that 
the celerity along the side is equal to the celerity that the wave would have for such 
conditions without rotation. The amplitude of the intumescence in a plane 
perpendicular to the wall decreases exponentially with increasing distance from the 
side, but the crest of the wave is curved backward. 

1. Introduction 
The internal solitary waves that are recorded in the oceans have dimensions such 

that the effect of the Earth’s rotation is expected to be non-negligible. But, up to 
now, there have been few experiments concerning internal solitary waves, and even 
fewer in rotating systems. Most of the experimental studies are in non-rotating 
shallow-water conditions (Walker, 1973; Yates 1978; Kao 6 Pao 1979) and only Koop 
& Butler (1981 ) and Kao, Pan 6 Renouard (1985) provide a large set of comparisons 
between experimental and theoretical results for a wide range of experimental 
conditions. But, in rotating system, one can expect some drastic changes such as are 
suggested, for a nonlinear Kelvin front, by the experimental results of Maxworthy 
(1983). Analytical results about the effects of rotation on nonlinear waves were 
obtained by Smith (1972) and more recently by Grimshaw (1985). We present herein 
some experimental results for solitary internal Kelvin waves. This study should be 
placed among the work previously done on the large rotating platform at Grenoble 
University, first devoted to linear internal waves in rotating systems (Chabert 
d’Hibres & Suberville 1976; Kravtchenko & Suberville 1977), and then to nonlinear 
intcrnal waves but in non-rotating systems (Helal 6 Molines 1981). 

t I’rrmanent affiliation : Institute of Physical Oceanography, Shandong College of Oceanogra- 
phy. P.0.  I h x  90, Qingdao, China 

13-2 



382 D.  P. Renouard, X .  Zhang and G. C .  D'Hidres 

\ 
\ RULalll lY / 

platform / 
FIGURE 1. The (10 m x 2 m x 0.6 m) channel built on the rotating platform 14 m diameter, and 

equipped with a paddle. 

2. Experimental facility 
We used a channel 10 m long, 2 m wide and 0.6 m deep, equipped with a wave 

generator, which is a horizontal paddle, 2 m wide and 1 m long, moving vertically. 
The vertical displacements and the time of each of these movements are well 
controlled and can be accurately reproduced, so that, for a given set of experimental 
conditions (thicknesses and densities of the upper and lower layers), we can either 
have several identical displacements of the paddle, or a wide range of displacements, 
usually of increasing amplitude. For these experiments, the period of platform 
rotation varied between 50.4 and 150 s, thus covering a wide range variation of the 
Coriolis parameterf. The interface height variations with time, a t  a given point, are 
recorded by an interface follower. This apparatus is a probe electronically directed 
to follow the movements of a layer of given conductivity with great accuracy. 
Basically, the principle of this recorder is to measure the conductivity of a given layer, 
and to  compare i t  with a given reference conductivity chosen by the operator. With 
this system, we are able to follow the interface with a precision of 0.1 mm in height, 
and a response time of about 0.5 s. The recordings are made in two ways: (a)  by 
analogue recording from a rotary potentiometer, fitted on the same axis as the motor 
of the interface follower; and ( b )  by a digital optical recorder, fitted on the same axis 
as the motor, which allows direct data acquisition on a microcomputer. We can use 
six such interface followers t o  study the internal phenomena. 

3. Experimental results 
Along the interface we observe a wave depression if h, < h, and elevation if h, > h,. 

Such a wave, in the absence of rotation, has a horizontal crest perpendicular to the 
longitudinal axis of the channel and of the sech2 shape. It propagates at a celerity 
dependent on the amplitude and given to a first order of approximation by the 
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FIQIJRE 2. Shape of the intumescence along the right-hand wall of the channel: (a) without rotation; 
(b)  with rotation. The solid line corresponds to the sech2 profile, the dashed line to the Lorentzian. 

solution of the KdV equation. We can verify that the basic KdV scaling law relating 
the amplitude to the wavelength is satisfied; namely, that the characteristic 
wavelength varies inversely as the square root of the wave amplitude (Kao et al. 
1985). 

As soon as rotation is introduced the wave, which is first generated with a 
horizontal crest, changes its shape in a geostrophic adjustment process. After about 
ten radii of deformation from the paddle, the intumescence reaches a stable 
equilibrium shape and then only the viscous damping modifies the intumescence, 
which is located along the right-hand side of the channel (figure 1). This intumescence 
propagates in such a way that it is at  the right-hand side of the channel with respect 
to its direction of propagation. The amplitude of the wave decreases with increasing 
distance from the wall. This wave is followed by a train of dispersive waves, always 
of much smaller amplitude, and which propagates at  a lower celerity. 

If we record the shape of this intumescence along the right-hand side, at  any point 
after the wave reaches its equilibrium form we can observe that, whatever may be 
the experimental conditions (thicknesses and densities of the upper and lower layers) 
or the rotation speed, the experimental points follow the sech2 shape quite nicely 
(figure 2). But, as pointed out by Koop & Butler (1981), such a test of profile similarity 
is not very stringent, for we introduce an artificial constraint in requiring that theory 
and experiment agree at Bct = 0 and 1.2, where B = [$A(h,-h,)/(hih;)$. Since the 
wave profiles are very similar no large difference between the two waves would be 
expected. If we record the shape of the wave in various planes parallel to the 
longitudinal sides, we notice that the experimental points still follow the sech2 profile, 
but increasing scattering develops with increasing distance from the right-hand side 
(figure 3). This scattering also increases with increasing f. 

As one might expect, owing to the geostrophic adjustment in the tank, for identical 
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FIGURE 3. Shape of the downstream part of the intumescence in various plans parallel to the 
right-hand wall for two periods of rotation of the platform: (a) h, = 4 cm; h, = 26 cm; 
Ap/p2 = O.O12;j= 0.249 s-l; ( b )  h, = 4 cm; h, = 27 cm; A p / p p  = 0.013;f= 0.0837 SP. The solid 
line corresponds to the sech2 profile. 
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FIQURE 4. Variation with f of the amplitude along the wall at four different locations: 0, 
5 = 250 cm; V, 300 cm; A, 350 cm; *, 400 cm; h, = 4 cm; h, = 26.5 cm; Ap/p, = 0.012. 

experimental conditions (thicknesses and densities of the upper and lower layers and 
displacements of the paddle), the amplitude of the intumescence at a given point 
along the right-hand side of the tank increases with increasing Coriolis parameter f 
and i t  does seem that this increase, at a first order of approximation, is linear (figure 
4). 

Once the intumescence reaches its equilibrium shape, the amplitude along the wall 
decreases with increasing distance from the paddle because of viscous damping. The 
two-layer formulation for the viscous damping of an internal solitary wave in 
non-rotating axes was first derived by Segur & Hammack (1982) in a manner 
analogous to Keulegan's (1948) linear formulation of the viscous damping of long 
surface waves. The equation for the slow decay of an internal solitary wave as it 
propagates over a long distance is written as 

where 

and Ax is the distance between the initial observation station, where the stable 
solitary wave has amplitude qo, and some other observation station where the 
amplitude will be 7;  w is the width of the tank; v the viscosity, assumed equal in 
both layers ; and g the acceleration due to gravity. This relation has been established 
without rotation ; nonetheless the experiments show that, when the Coriolis para- 
meter is small, there is still a good agreement between the observations and the 
computations (figure 5a ,  b). But when the Coriolis parameter increases, i.e. when the 
transverse profile becomes significantly different from the horizontal crest, as we shall 
see below there is only a small deviation from the predicted values (figure 5 c ,  d), so 
that there does not seem to be much of an effect of Coriolis forces on viscous damping. 
One may note that, when the initial observation station taken for this damping 
computation is too close to the paddle, the agreement between the computed damping 
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FIGURE 5. Decrease of the amplitude along the right-hand side of the channel due to viscous 
damping, and comparison with the computed damping (dashed line) for two different paddle 
displacements. (a, b ) f =  0.1015 s-l, (c, d)f = 0.210 s-l; h, = 1.7 cm; h, = 12.3 cm; Ap/pz = 0.017. 

and the experimental data is very poor. The same result was observed for a surface 
solitary wave (Renouard, Seabra-Santos & Temperville 1985), and is because the 
formula supposes a stable shape between the two observation stations : such a shape 
is reached only after some distance from the paddle, in practice for X > 10R, where 
R is the internal radius of deformation. 

As already mentioned, as soon as there is rotation, the crest of the wave is neither 
horizontal nor contained in a vertical plane perpendicular to the side. But i t  does 
have a stable shape; that is, if we carefully measure the celerity of this wave along 
various lines parallel to the wall, we find that after some distance from the paddle, 
an equilibrium shape is reached, and the wave moves as a whole, without deformation 
apart from the damping. Once this equilibrium shape is reached, if we consider the 
profile of a wave in a vertical plane perpendicular to the wall and with its maximum 
amplitude A, along the side, we can see that it is exponentially decreasing, 
Z = A, exp ( -  K y ) ,  with increasing distance from the wall (figure 6a) .  The coefficient 
of the exponential K is larger than the inverse of the internal radius of deformation. 
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FIQURE 6. (a) Amplitude along a line perpendicular to the side. ( b )  Comparison -2tween K-l, a 
coefficient computed from the data, and R,, the internal radius of deformation calculated from 
the actual celerity along the wall. (c) Comparison between K-' and R,, the internal radius of 
deformation calculated from the linear celerity. 

If, to compute this radius of deformation, we use the actual celerity of the wave along 
the wall, we find that there is a consistent correlation between R and K-l :  
K-' = 0.72RW (figure 6b).  This result is consistent with the data of Maxworthy 
(1984). Now, if we compute the linear celerity from the actual celerity, i.e. to a first 
approximation 

co = c , ( ~ - ~ A , ) ~  Ih1-h I 
2hl h2 

where c,  and A ,  are the celerity and amplitude of the wave along the wall, and 
compare K with R, = co/f, we can see that K-l = R, (figure 6c).  

Now, as we said previously, a striking feature of this wave is that the crest of the 
wave is not contained in a vertical plane perpendicular to side but is curved backward, 
hence there is a spatial phase shift which increases with increasing distance from the 
wall, and at a given distance from the wall increases with increasing f (figure 7). If 
we consider the projection of the crest on a vertical plane perpendicular to the wall 
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FIGURE 7. ( a )  Top view of the wave crest, at x = 4 m, h, = 1.5 cm; h, = 12 cm; Ap/p, = 0.013; 
f = 0.139 s - I .  (Owing to a large paddle displacement there are two internal solitary waves). ( b )  
Contour lines of an internal solitary wave; h, = 4 cm; h, = 26 cm; Ap/p2 = 0.012;f= 0.249 s-'. 
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FIGURE 8. (a) In semi-log coordinates, a profile of the projection of the crest of the wave upon a 
vertical plane perpendicular to the side; the dashed line corresponds to exp ( - K ,  y), the solid line 
to exp (-y/R,); ( b )  non-dimensionalized spatial phase shift, recorded at various locations and for 
various periods of rotation of the platform. The solid line corresponds to the approximation deduced 
from Maxworthy (1983). 

and passing through the maximum amplitude of the wave along the wall, we notice 
that it can be described by 2 = A, exp(-K,, y )  and, in semi-log coordinates, is 
slightly above the line exp(-y/R), as one would expect (figure 8). The relation 
experimentally found between K ,  and R is K;' = 1.04R0 (K;l = 1.32RW). Since, as 
noted above, the general shape of the wave is stable, along any line parallel to the 
wall the spatial phase shift is constant with time once the wave reaches its equilibrium 
shape. If we non-dimensionalize this spatial phase-shift Ax by the quantity 

as suggested by Maxworthy (1983), we see that the experimental observations are 
along a line which is clearly distinct from the approximation that one can deduce 
from Maxworthy (1983). 

If we now look a t  the celerities, we can see that, for identical experimental 
conditions (thicknesses and densities of the upper and lower layers, same rotation 
period of the platform) and if we increase the paddle displacements and thus the 
amplitude of the solitary wave, the celerity along the wall will increase roughly 
following the first approximation given by 

C, = ~,(i+wA,) 

(figure 9). But a new feature revealed by these sets of experiments is that if, for various 
periods of platform rotation, we carefully keep the same experimental conditions 
(thicknesses and densities of the upper and lower layers) and the same paddle 
displacement, we see that the amplitude along the wall increases withf, as previously 
noted but that the celerity along the wall, measured between the same locations for 
the whole set of experiments, is constant. Moreover, in a plane parallel to the wall 
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FIGURE 9. Relative increase of celerity along the wall, (cw-co)/co, versus a reduced amplitude, 
Ihl-h,1/(2hl h2) A, for two sets of experimental conditions: 0, h, = 1.7 cm; h, = 12.3 cm; 
Ap/p, = 0.017; Trot = 60 s;  +, h, = 1.7 cm; h, = 12.3 crn; Applp, = 0.017; Trot = 120 s. 
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FIGURE 10. Celerity of the wave along the wall (yo) and at some distance from the wall (yl) for various 
periods of rotation, but the same experimental conditions (h, = 4 cm; h, = 26.5 crn; 
Ap/p2 = 0.022). Trot = 150 s; +, yo = 1 cm; 0, y, = 55 cm;.  Trot = 90 8 :  V, yo = 1 cm; V, 
y1 = 47 cm; Trot = 50.4 s;  A, yo = 1 cm, A, y, = 45 cm. The solid line corresponds to the celerity 
of solitary waves generated under the same experimental conditions but in the absence of rotation. 

and at  about one radius of deformation from the wall, the celerity of the wave crest 
is equal to the celerity along the wall (figure 10). So we get the paradoxical result 
that a nonlinear wave has a celerity which is constant regardless of the amplitude 
of the wave. A closer examination of the results shows that this celerity is the celerity 
of a solitary wave propagating under the same experimental conditions, generated 
by the same paddle displacement, but without rotation (figure 10). A possible 
explanation could be that the wave we observe is the end result of a geostrophic 
adjustment from the horizontal crest intumescence generated by the paddle. Thus, 
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FIQURE 11. (a) Relationship between the reduced Characteristic length and the amplitude along 
the wall. The solid line corresponds to the KdV scaling law without rotation (slope -:). 
Experimental conditions: h, = 4 cm; h, = 23 cm; Ap/pg = 0.012: +, f =  0; 0, Trot = 150 s; 0, 
Trot = 120 s ;  V, Trot = 90 s ;  0, Trot = 75 s ;  A, Trot = 50.4 s. ( b )  Relationship between the reduced 
characteristic length and the average amplitude across the channel. Same experimental conditions 
as (a). 

the celerity would be fixed by the amplitude of the horizontal-crest solitary wave first 
generated by the paddle, itself determined by the volume moved, that is by the paddle 
displacement, which was constant for this whole set of experiments. 

We now turn our attention to the relationship between the reduced amplitude 
along the wall (A&, - h,l/h, h,) and the non-dimensionalized characteristic length- 
scale, L,/(h, h,);. We first check that the KdV scaling law, which will appear in log-log 
coordinates as a -+ slope, is accurately verified in the channel in the absence of 
rotation. Now, if we introduce rotation, the experimental data, for a given period 
of rotation, are still along a line of slope - t ,  hence the KdV scaling law still holds. 
But the distance between the lines traced for f =  0 and f =l= 0 increases with f 
(figure 11 a). Though difficult to measure accurately, it seems that, to a first approxi- 
mation, this distance increases linearly with increasing f. This is consistent with the 
roughly linear variation of the amplitude withfnoted above (i.e. figure 4) : the Coriolis 
effect increases the wall amplitude, hence moving the data to the right in figure 11 (a). 
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Moreover we checked that if we measure the characteristic length in various planes 
parallel to the wall, it is almost constant, i.e. independent of y, although the 
amplitude noticeably decreases (figure 12). If we now use a characteristic wave 
amplitude across the crest rather than the value a t  the wall we find a good agreement 
with the KdV scaling law (figure 11 6 ) .  This characteristic wave amplitude was defined 
as the amplitude at about one internal radius of deformation from the wall. 

Let us note that if, neglecting the crest curvature, we check amplitude of a solitary 
wave of the same wavelength propagating in a non-rotating channel of finite width 
L,  we find that it is linked with the rotating wave amplitude by the relation: 

Applying this relation for our data, we find that ti:R = 0.108+0.027, the star 
indicating a non-dimensionalized value, and the bar an  averaged value for four 
different rotation periods of the platform (but same experimental conditions). 
Granted that i t  is only an approximation, this is a rather good result which tends to 
support our hypothesis that  both the amplitude, and thus the celerity, and the 
wavelength are determined by the initial paddle movement, which was identical for 
all four experiments. 

4. Discussion 
Thus we have observed a Kelvin-type solitary wave fulfilling the characteristic 

KdV scaling relationship. The rotation introduces a spatial phase shift so that the 
wave is curved backward. This wave, once i t  reaches its equilibrium shape, moves 
as a whole with a celerity parallel to the wall which is independent of the distance 
from the wall and equal to  the celerity of a solitary wave generated under identical 
experimental conditions but without rotation. 

Using Grimshaw’s ( 1985) classification, our experimental conditions correspond 
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more closely to the ‘strong rotation’ case, i.e. internal Rossby radius at  most 
comparable to the wave-length, than to the ‘weak rotation ’ case, i.e. internal Rossby 
radius much larger than the wavelength, for 0.30 < L,/Ro < 0.80 for all experiments. 
So as noted by Grimshaw (1985) and by Maxworthy (1983), the phase speed and the 
shape at  the channel wall are unaffected by rotation, and we can add that viscous 
damping is likewise unaffected by rotation. Grimshaw (1985) found that there is a 
nonlinear influence on the transverse decay scale, but was not able to account for 
a decay such as Maxworthy’s. Since our channel was larger than the internal Rossby 
radius (2.4 < L/R,  < 6.7) only the term associated with the decay scale K = -f/c, 
appears, which is in agreement with Grimshaw (1985). 

None of the available theory can account for the wave crest curvature, probably 
because a frictionless fluid is involved. In fact this effect might be due to frictional 
forces, as one might infer from the work of Brink & Allen (1978) and Mofjeld (1980). 
Nonetheless we should note that this curvature effect appears whatever the relative 
thickness of the upper layer is, i.e. whether it is a wave depression (thick lower layer) 
or a wave surelevation (thin lower layer). So we think that the origin of this curvature 
is to be found both in higher-order nonlinear effects and in frictional effects. We were 
unable to measure transverse phase speed, and so can only say that the phase speed 
measured in planes parallel to the wall was found to be constant, i.e. independent 
of the distance from the wall, and equal to the celerity that a solitary wave generated 
in a non-rotating system by the same paddle movement under the same experimental 
conditions would have. It is also important to note that the front was not curved 
at  the time of generation and that turbulence was only locally observed near the 
paddle, the wave itself being perfectly smooth, so that the crest curvature cannot 
be traced to the fact that there was a point-source perturbation. Moreover we think 
that we have reasonably good experimental evidence that the wave amplitude at the 
wall is also linked with the amplitude that a wave generated in a non-rotating system 
by the same paddle movement under the same experimental condition would have. 
As the same holds true for the wavelength, although with some more scattering, we 
think that the characteristics of the observed waves are fixed by the paddle 
movement and the horizontal crest wave it generates, the crest curvature being due 
to frictional and higher-order nonlinear effects. 
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